A history of advances in sedaDNA research Peter D. Heintzman The Arctic University Museum of Norway ## What is sedimentary ancient DNA? #### "Modern DNA molecule" #### "Ancient DNA molecules" ## The strength of sedimentary ancient DNA ## A history of advances in the field Analysis of Subfossil Molecular Remains of Purple Sulfur Bacteria in a Lake Sediment MARCO J. L. COOLEN AND JÖRG OVERMANN* *Applied Enviro. Microbio.* **64**, 4513 | | Sample age (ky B.P.) | | | | | | Taxonomic identification | S | | |--------------------------|----------------------|---------------|----------|--|--|--|--|---|--| | New Zealand | | Siberia | | Region
(mtDNA) | Sequence
length | | | | | | Cave
0.6 | Bone
1 to 3 | 10.4 | 19 | 20 to 30 | (************************************** | (bp) | Taxa with highest sequence similarity | Seq.
similarity (% | | | | | 1 | | 2 | cyt b | 98 | Mammuthus primigenius (mammoth)† | 98 to 99 | | | | | | 7 | | cyt b | 229 | Mammuthus primigenius (mammoth)† | 99 to 100 | | | | | 8 | 4 | 1 | 16 <i>S</i> | 92 to 93 | Mammuthus primigenius (mammoth)† | 97 to 100 | | | | | | 12 | | 16 <i>S</i> | 90 | Equus caballus (horse) | 98 to 100 | | | | | | 4 | | 16 <i>S</i> | 88 to 90 | Lemus lemus (lemming) | 97‡ | | | | | 2 | | | 16 <i>S</i> | 95 | Lepus europaeus (hare) | 96 | | | | | 2 | 1 | 1 | Control region | 124 to 125 | Bison spp. (bison)† | 98 to 100* | | | | | _ | 1 | | 165 | 93 | Ovibos moschatus (musk ox) | 100 | | | | | | 1 | | Control region | 129 | Ovibos moschatus (musk ox) | 82‡ | | | | | 1 | · | | Control region | 124 | Rangifer tarandus (reindeer) | 98 | | | 15 | | | | | Control region | 202 to 203 | Megalapteryx didinus (Upland moa)† | 97 to 100* | | | 2 | | | 1000 | / // | Control region | 204 | Pachyornis elephantonys (Heavy- | 99* | | | | | | | | Y | | 1 | | | | | 10 | | A.C. | | | La Carrie | astal moa)† | 96 to 100* | | | 11 | | | | | 一条"多个火"两个 | LIE W / THE | Upland moa)† | 97 to 100 | | | 2 | | | | | 001 | | elandiae (New | 98 (29) | | | | | | 25 | | | | | ` ' | | | | | | | Carlo Contraction of the Contrac | | | | | | | $\Sigma = 30$ | $\Sigma = 10$ | $\Sigma = 14$ | $\sum =$ | | | | 3 20 4 W. (17) 11/2 | | | | | | | | | of your | | | | | | | | | | ESC . | | | | | | | | | | | | | | The state of s | | | | | | | | - | 100 | The state of s | 1 | | TI NEW MANAGEMENT | SPARASONALII LOLEDDELL | | | | | | 100 | | | | | | | | | | | | | | The second second | | | | | | | | | THE PERSON NAMED IN | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | \$901274 11224 | 57, | | | Science 300 , 791 | | | | THE POST | | | | * WIKIDEDINT | | | Colo | | , 0 1 | | Carlo Maria | ALL THE PARTY OF T | A STATE OF THE STA | | Start Left-trove Data Right-trave S
fostern Indicator Codewords Indicator Pr | | | | | | 1000 | | @Palaed | Pete | 直绕 旗 | | | #### Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments Eske Willerslev, 1* Anders J. Hansen, 1*† Jonas Binladen, 1 Tina B. Brand, 1 M. Thomas P. Gilbert, 2 Beth Shapiro, 2 Michael Bunce, 2 Carsten Wiuf, 3 David A. Gilichinsky, 4 Alan Cooper 2 @PalaeoPete | ID | | Families, | no. different | Bootstrap % | Next closest match | Putative | | |-----|---|--------------|---------------|-------------|----------------------|--------------|--| | | | 0 | 1 | | Family/order | | | | 12S | 1 | Megatheridea | NID | 94 | Mylodontidea (5) | Megatheridae | | | | 2 | NID | Cathartidae | 47 | Phoenicopteridae (3) | Cathartidae | | | | 3 | NID | Procyonidae | 87 | Procyonidae (4) | Procyonidea | | | | | | | | Mephitinae (4) | | | | | 4 | Sciuridae | NID | 97 | Sciuridae (4) | Sciuridae | | | | 5 | Hominidae | Hominidae | NA | Hominidae | Hominidae | | | 16S | Α | Megatheridea | NID | NA | Megatheridae | Megatheridea | | | | В | NID | NID | NA | Cathartidae (8) | Cathartidae | | #### Molecular caving Michael Hofreiter¹, Jim I. Mead², Paul Martin³ and Hendrik N. Poinar^{1,4} Ancient DNA Chronology within Sediment Deposits: Are Paleobiological Reconstructions Possible and Is DNA Leaching a Factor? James Haile,* Richard Holdaway,† Karen Oliver,* Michael Bunce,‡ M. Thomas P. Gilbert,§ Rasmus Nielsen,§ Kasper Munch,§ Simon Y. W. Ho,* Beth Shapiro,* and Eske Willerslev*§ | Order | Marker | Clones | Support (%) | Family | Marker | Clones | Support (%) | Genus | Marker | Clones | Support (%) | |--------------|--------|--------|-------------|---------------|--------------|--------|-------------|-----------|--------------|--------|-------------| | JEG sample | | | | | | | | | | | | | Rosales | rbcL | 3 | 90-99 | | | | | | | | | | Malpighiales | rbcL | 2 | 99-100 | Salicaceae | <i>rbc</i> L | 2 | 99-100 | | | | | | | trnL | 5 | 99-100 | | <i>trn</i> L | 4 | 100 | | | | | | Saxifragales | rbcL | 3 | 92-94 | Saxifragaceae | <i>rbc</i> L | 2 | 92 | Saxifraga | <i>rbc</i> L | 2 | 91 | | Dye 3 sample | | | | | | | | | | | | | Coniferales | rbcL | 44 | 97-100 | Pinaceae* | <i>rbc</i> L | 20 | 100 | Picea | <i>rbc</i> L | 20 | 99-100 | | | trnL | 27 | 100 | | <i>trn</i> L | 25 | 100 | Pinus† | trnL | 17 | 90–99 | | | | | | Taxaceae‡ | <i>rbc</i> L | 23 | 91-98 | | | | | | | | | | | trnL | 2 | 100 | | | | | | Poales§ | rbcL | 67 | 99-100 | Poaceae§ | <i>rbc</i> L | 67 | 99-100 | | | | | | | trnL | 17 | 97-100 | | trnL | 13 | 100 | | | | | | Asterales | rbcL | 18 | 90-100 | Asteraceae | <i>rbc</i> L | 2 | 91 | | | | | | | trnL | 27 | 100 | | trnL | 27 | 100 | | | | | | Fabales | rbcL | 10 | 99-100 | Fabaceae | rbcL | 10 | 99-100 | | | | | | | trnL | 3 | 99 | | trnL | 3 | 99 | | | | | | Fagales | rbcL | 10 | 95–99 | Betulaceae | rbcL | 8 | 93-97 | Alnus | rbcL | 7 | 91–95 | | _ | trnL | 12 | 100 | | trnL | 11 | 98-100 | | trnL | 9 | 98-100 | | Lepidoptera | COI | 12 | 97–99 | | | | | | | | | 800,000-130,000 years old #### Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland Eske Willerslev, * Enrico Cappellini, * Wouter Boomsma, * Rasmus Nielsen, * Martin B. Hebsgaard, * Tina B. Brand, * Michael Hofreiter, * Michael Bunce, Micha ## Ancient DNA reveals late survival of mammoth and horse in interior Alaska James Haile^a, Duane G. Froese^b, Ross D. E. MacPhee^c, Richard G. Roberts^d, Lee J. Arnold^{d,1}, Alberto V. Reyes^b, Morten Rasmussen^a, Rasmus Nielsen^e, Barry W. Brook^f, Simon Robinson^b, Martina Demuro^d, M. Thomas P. Gilbert^a, Kasper Munch^e, Jeremy J. Austin^g, Alan Cooper^g, Ian Barnes^h, Per Möllerⁱ, and Eske Willerslev^{a,2} ## Long livestock farming history and human landscape shaping revealed by lake sediment DNA Charline Giguet-Covex^{1,2,*}, Johan Pansu^{1,*}, Fabien Arnaud², Pierre-Jérôme Rey², Christophe Griggo², Ludovic Gielly¹, Isabelle Domaizon³, Eric Coissac¹, Fernand David⁴, Philippe Choler^{1,5}, Jérôme Poulenard² & Pierre Taberlet¹ Nat. Comms. ncomms4211. ## Fifty thousand years of Arctic vegetation and megafaunal diet Eske Willerslev¹*, John Davison²*, Mari Moora²*, Martin Zobel²*, Eric Coissac³*, Mary E. Edwards⁴*, Eline D. Lorenzen^{1,5}*, Mette Vestergård¹*, Galina Gussarova^{6,7}*, James Haile^{1,8}*, Joseph Craine⁹, Ludovic Gielly³, Sanne Boessenkool⁶†, Laura S. Epp⁶†, Peter B. Pearman¹⁰, Rachid Cheddadi¹¹, David Murray¹², Kari Anne Bråthen¹³, Nigel Yoccoz¹³, Heather Binney⁴, Corinne Cruaud¹⁴, Patrick Wincker¹⁴, Tomasz Goslar^{15,16}, Inger Greve Alsos¹⁷, Eva Bellemain⁶†, Anne Krag Brysting¹⁸, Reidar Elven⁶, Jørn Henrik Sønstebø⁶, Julian Murton¹⁹, Andrei Sher²⁰‡, Morten Rasmussen¹, Regin Rønn²¹, Tobias Mourier¹, Alan Cooper²², Jeremy Austin²², Per Möller²³, Duane Froese²⁴, Grant Zazula²⁵, François Pompanon³, Delphine Rioux³, Vincent Niderkorn²⁶, Alexei Tikhonov²⁷, Grigoriy Savvinov²⁸, Richard G. Roberts²⁹, Ross D. E. MacPhee³⁰, M. Thomas P. Gilbert¹, Kurt H. Kjær¹, Ludovic Orlando¹, Christian Brochmann^{6*} & Pierre Taberlet^{3*} #### FROM THE COVER #### Minimizing polymerase biases in metabarcoding Ruth V. Nichols¹ | Christopher Vollmers² | Lee A. Newsom³ | Yue Wang⁴ | Peter D. Heintzman^{1,5} | McKenna Leighton² | Richard E. Green² | Beth Shapiro¹ 152 wheat sequences from72 million raw sequences Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago Clemens L Weiß¹, Michael Dannemann², Kay Prüfer², Hernán A Burbano¹* #### TECHNICAL COMMENT **ARCHAEOLOGY** ### **Comment on "Sedimentary DNA from** a submerged site reveals wheat in the British Isles 8000 years ago" K. D. Bennett^{1,2} ## Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska Russell W. Graham^{a,1}, Soumaya Belmecheri^{a,b}, Kyungcheol Choy^c, Brendan J. Culleton^d, Lauren J. Davies^e, Duane Froese^e, Peter D. Heintzman^f, Carrie Hritz^g, Joshua D. Kapp^f, Lee A. Newsom^{h,i}, Ruth Rawcliffe^c, Émilie Saulnier-Talbot^c, Beth Shapiro^{f,j}, Yue Wang^k, John W. Williams^{k,I}, and Matthew J. Wooller^{c,m} ## Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska Russell W. Graham^{a,1}, Soumaya Belmecheri^{a,b}, Kyungcheol Choy^c, Brendan J. Culleton^d, Lauren J. Davies^e, Duane Froese^e, Peter D. Heintzman^f, Carrie Hritz^g, Joshua D. Kapp^f, Lee A. Newsom^{h,i}, Ruth Rawcliffe^c, Émilie Saulnier-Talbot^c, Beth Shapiro^{f,j}, Yue Wang^k, John W. Williams^{k,l}, and Matthew J. Wooller^{c,m} ## Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska Russell W. Graham^{a,1}, Soumaya Belmecheri^{a,b}, Kyungcheol Choy^c, Brendan J. Culleton^d, Lauren J. Davies^e, Duane Froese^e, Peter D. Heintzman^f, Carrie Hritz^g, Joshua D. Kapp^f, Lee A. Newsom^{h,i}, Ruth Rawcliffe^c, Émilie Saulnier-Talbot^c, Beth Shapiro^{f,j}, Yue Wang^k, John W. Williams^{k,l}, and Matthew J. Wooller^{c,m} Bottleneck corridor Biological 2016 Tundra/steppe Aspen parkland Charlie Lake Spring Lake viability Glacial Lake Peace Cal. of the corridor kyr вр Vertebrates 9.0 Sandy Gyttja gyttja Bottleneck Laminated Fine area closed. silt sand boreal forest Grave eporidae Sandy Laurentide Ice Sheet Picea pollen Mammoth Brown bat reaches 50% Eagle Bison indicates local forested conditions Moose Hare Vole Elk Pike Perch Stickleback 11.0 11.0 Open corridor, steppe 11.5 and poplar environment Cal. kyr BP 12.0 12.0 2.0 Charlie Lake Cave occupation Clovis initial appearance (conservative Closed estimate) corridor, passage under water Clovis initial appearance (liberal estimate) and glacial ice Postglacial viability and colonization in North America's ice-free corridor Mikkel W. Pedersen¹, Anthony Ruter¹, Charles Schweger², Harvey Friebe², Richard A. Staff³, Kristian K. Kjeldsen^{1,4}, Marie L. Z. Mendoza¹, Alwynne B. Beaudoin⁵, Cynthia Zutter⁶, Nicolaj K. Larsen^{1,7}, Ben A. Potter⁸, Rasmus Nielsen^{1,9,10}, Rebecca A. Rainville¹¹, Ludovic Orlando¹, David J. Meltzer^{1,12}, Kurt H. Kjær¹ & Eske Willerslev^{1,13,14} ₩ @PalaeoPete 14.0 - O STEEL STEEL b) 5.0F-4 DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago Frederik Valeur Seersholm^{1,2,†}, Mikkel Winther Pedersen¹, Martin Jensen Søe^{1,3}, Hussein Shokry¹, Sarah Siu Tze Mak¹, Anthony Ruter¹, Maanasa Raghavan^{1,4}, William Fitzhugh⁵, Kurt H. Kjær¹, Eske Willerslev^{1,4}, Morten Meldgaard^{1,6}, Christian M.O. Kapel³ & Anders Johannes Hansen¹ Nat. Comm. ncomms13389 ## Neandertal and Denisovan DNA from Pleistocene sediments Viviane Slon, ^{1*} Charlotte Hopfe, ¹ Clemens L. Weiß, ² Fabrizio Mafessoni, ¹ Marco de la Rasilla, ³ Carles Lalueza-Fox, ⁴ Antonio Rosas, ⁵ Marie Soressi, ^{6,7} Monika V. Knul, ⁸ Rebecca Miller, ⁹ John R. Stewart, ⁸ Anatoly P. Derevianko, ^{10,11} Zenobia Jacobs, ^{12,13} Bo Li, ¹² Richard G. Roberts, ^{12,13} Michael V. Shunkov, ^{10,14} Henry de Lumley, ^{15,16} Christian Perrenoud, ^{15,17} Ivan Gušić, ¹⁸ Željko Kućan, ¹⁸ Pavao Rudan, ¹⁸ Ayinuer Aximu-Petri, ¹ Elena Essel, ¹ Sarah Nagel, ¹ Birgit Nickel, ¹ Anna Schmidt, ¹ Kay Prüfer, ¹ Janet Kelso, ¹ Hernán A. Burbano, ² Svante Pääbo. ¹ Matthias Mever^{1*} Sci. Rep. 118, e2019069118 Persistence of arctic-alpine flora during 24,000 years of environmental change in the Polar Urals C. L. Clarke 1, M. E. Edwards 1, L. Gielly 2, D. Ehrich 3, P. D. M. Hughes 1, L. M. Moroz 4, H. Haflidason 5, J. Mangerud 5, J. I. Svendsen 5 & I. G. Alsos 6 # Then we had 2021-present... ## Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes Sci. Rep. 11, 3220 L. Armbrecht^{1⊠}, G. Hallegraeff², C. J. S. Bolch³, C. Woodward⁴ & A. Cooper⁵ Mol. Ecol. Resour. **21**, 801 Hybridization capture of larch (*Larix* Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest ``` Luise Schulte^{1,2} | Nadine Bernhardt¹ | Kathleen Stoof-Leichsenring¹ | Heike H. Zimmermann¹ | Luidmila A. Pestryakova³ | Laura S. Epp¹ | Ulrike Herzschuh^{1,2,4} ``` Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set Tyler J. Murchie^{a,b}* D, Melanie Kuch^{a,b}, Ana T. Duggan^{a,b}, Marissa L. Ledger^c, Kévin Roche^{d,e}, Jennifer Klunk^{a,f}, Emil Karpinski^{a,f}, Dirk Hackenberger^{a,g}, Tara Sadoway^{a,h}, Ross MacPheeⁱ, Duane Froese^j, Hendrik Poinar^{a,b,g*} **2020** *Quat. Res.* **99**, 305 ## Ancient plant DNA reveals High Arctic greening during the Last Interglacial Sarah E. Crump^{a,b,1}, Bianca Fréchette^c, Matthew Power^d, Sam Cutler^b, Gregory de Wet^{a,e}, Martha K. Raynolds^f, Jonathan H. Raberg^a, Jason P. Briner^g, Elizabeth K. Thomas^g, Julio Sepúlveda^a, Beth Shapiro^{b,h}, Michael Bunce^{d,i}, and Gifford H. Miller^a #### **ECOLOGY** #### Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia Dilli P. Rijal^{1,2}*[†], Peter D. Heintzman¹*[†], Youri Lammers¹, Nigel G. Yoccoz², Kelsey E. Lorberau², Iva Pitelkova¹, Tomasz Goslar^{3,4}, Francisco J. A. Murguzur², J. Sakari Salonen⁵, Karin F. Helmens^{6,7}, Jostein Bakke⁸, Mary E. Edwards^{1,9,10}, Torbjørn Alm¹, Kari Anne Bråthen², Antony G. Brown^{1,9}, Inger G. Alsos¹*[†] Anthropogenic and environmental drivers of vegetation change in southeastern Norway during the Holocene ### Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA Tyler J. Murchie ^{1,2 ⊠}, Alistair J. Monteath^{3,4}, Matthew E. Mahony³, George S. Long ^{1,5}, Scott Cocker ³, Tara Sadoway^{1,6}, Emil Karpinski ^{1,5}, Grant Zazula^{7,8}, Ross D. E. MacPhee⁹, Duane Froese ^{3 ⊠} & Hendrik N. Poinar ^{1,2,10,11,12 ⊠} ## Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA Tyler J. Murchie 1,2 Monteath 1,4, Matthew E. Mahony 3, George S. Long 1,5, Scott Cocker 3, Tara Sadoway 6, Emil Karpinski 1,5, Grant Zazula 7,8, Ross D. E. MacPhee 9, Duane Froese 3 & Hendrik N. Poinar 1,2,10,11,12 M #### Late Quaternary dynamics of Arctic biota from ancient environmental genomics Yucheng Wang^{1,2,35}, Mikkel Winther Pedersen^{2,35}, Inger Greve Alsos^{3,35}, Bianca De Sanctis^{1,4}, Fernando Racimo², Ana Prohaska¹, Eric Coissac^{3,5}, Hannah Lois Owens⁶, Marie Kristine Føreid Merkel³, Antonio Fernandez-Guerra², Alexandra Rouillard^{2,7}, Youri Lammers³, Adriana Alberti^{8,9}, France Denoeud⁹, Daniel Money¹, Anthony H. Ruter², Hugh McColl², Nicolaj Krog Larsen², Anna A. Cherezova^{10,11}, Mary E. Edwards^{12,13}, Grigory B. Fedorov^{10,11}, James Haile², Ludovic Orlando¹⁴, Lasse Vinner², Thorfinn Sand Korneliussen^{2,15}, David W. Beilman¹⁶, Anders A. Bjørk¹⁷, Jialu Cao², Christoph Dockter¹⁸, Julie Esdale¹⁹, Galina Gusarova^{3,20}, Kristian K. Kjeldsen²¹, Jan Mangerud^{22,23}, Jeffrey T. Rasic²⁴, Birgitte Skadhauge¹⁸, John Inge Svendsen^{22,23}, Alexei Tikhonov²⁵, Patrick Wincker⁹, Yingchun Xing²⁶, Yubin Zhang²⁷, Duane G. Froese²⁸, Carsten Rahbek^{6,29}, David Bravo Nogues⁶, Philip B. Holden³⁰, Neil R. Edwards³⁰, Richard Durbin⁴, David J. Meltzer^{2,31}, Kurt H. Kjær², Per Möller³² & Eske Willerslev^{1,2,33,34 ™} #### Late Quaternary dynamics of Arctic biota from ancient environmental genomics Yucheng Wang^{1,2,35}, Mikkel Winther Pedersen^{2,35}, Inger Greve Alsos^{3,35}, Bianca De Sanctis^{1,4}, Fernando Racimo², Ana Prohaska¹, Eric Coissac^{3,5}, Hannah Lois Owens⁶, Marie Kristine Føreid Merkel³, Antonio Fernandez-Guerra², Alexandra Rouillard^{2,7}, Youri Lammers³, Adriana Alberti^{8,9}, France Denoeud⁹, Daniel Money¹, Anthony H. Ruter², Hugh McColl², Nicolaj Krog Larsen², Anna A. Cherezova^{10,11}, Mary E. Edwards^{12,13}, Grigory B. Fedorov^{10,11}, James Haile², Ludovic Orlando¹⁴, Lasse Vinner², Thorfinn Sand Korneliussen^{2,15}, David W. Beilman¹⁶, Anders A. Bjørk¹⁷, Jialu Cao², Christoph Dockter¹⁸, Julie Esdale¹⁹, Galina Gusarova^{3,20}, Kristian K. Kjeldsen²¹, Jan Mangerud^{22,23}, Jeffrey T. Rasic²⁴, Birgitte Skadhauge¹⁸, John Inge Svendsen^{22,23}, Alexei Tikhonov²⁵, Patrick Wincker⁹, Yingchun Xing²⁶, Yubin Zhang²⁷, Duane G. Froese²⁸, Carsten Rahbek^{6,29}, David Bravo Nogues⁶, Philip B. Holden³⁰, Neil R. Edwards³⁰, Richard Durbin⁴, David J. Meltzer^{2,31}, Kurt H. Kjær², Per Möller³² & Eske Willerslev^{1,2,33,34 ™} Environmental palaeogenomic reconstruction of an Ice Age algal population THE REAL PROPERTY. Youri Lammers o ^{1⊠}, Peter D. Heintzman o ^{1,2} & Inger Greve Alsos o ^{1,2} Pleistocene mitogenomes reconstructed from the environmental DNA of permafrost sediments Tyler J. Murchie, ^{1,2,11,*} Emil Karpinski, ^{1,3} Katherine Eaton, ^{1,2} Ana T. Duggan, ^{1,2} Sina Baleka, ¹ Grant Zazula, ^{4,5} Ross D.E. MacPhee, ⁶ Duane Froese, ^{7,*} and Hendrik N. Poinar ^{1,2,8,9,10,*} EAST - northwest Ancient mammalian fragments per mg sediment 0 250 500 750 1000 1250 #### Article ## Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave https://doi.org/10.1038/s41586-021-03675-0 Received: 2 February 2021 Accepted: 27 May 2021 Published online: 23 June 2021 Elena I. Zavala¹²³, Zenobia Jacobs^{2,323}, Benjamin Vernot¹, Michael V. Shunkov⁴, Maxim B. Kozlikin⁴, Anatoly P. Derevianko⁴, Elena Essel¹, Cesare de Fillipo¹, Sarah Nagel¹, Julia Richter¹, Frédéric Romagné¹, Anna Schmidt¹, Bo Li^{2,3}, Kieran O'Gorman², Viviane Slon^{1,5,6,7}, Janet Kelso¹, Svante Pääbo¹, Richard G. Roberts^{2,323} & Matthias Meyer¹²³ ~300,000 years old *Nature* **595**, 399 Sediment libraries - grouped by layer and sample (ordered by depth in stratigraphy) #### **PALEOGENOMICS** ### Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments Benjamin Vernot¹*, Elena I. Zavala¹, Asier Gómez-Olivencia^{2,3,4}, Zenobia Jacobs^{5,6}, Viviane Slon^{1,7,8}, Fabrizio Mafessoni¹, Frédéric Romagné¹, Alice Pearson¹, Martin Petr¹, Nohemi Sala^{4,9}, Adrián Pablos^{4,9}, Arantza Aranburu^{2,3}, José María Bermúdez de Castro⁹, Eudald Carbonell^{10,11}, Bo Li^{5,6}, Maciej T. Krajcarz¹², Andrey I. Krivoshapkin^{13,14}, Kseniya A. Kolobova¹³, Maxim B. Kozlikin¹³, Michael V. Shunkov¹³, Anatoly P. Derevianko¹³, Bence Viola¹⁵, Steffi Grote¹, Elena Essel¹, David López Herráez¹, Sarah Nagel¹, Birgit Nickel¹, Julia Richter¹, Anna Schmidt¹, Benjamin Peter¹, Janet Kelso¹, Richard G. Roberts^{5,6}, Juan-Luis Arsuaga^{4,16}, Matthias Meyer^{1*} #### **PALEOGENOMICS** #### **Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments** Benjamin Vernot¹*, Elena I. Zavala¹, Asier Gómez-Olivencia^{2,3,4}, Zenobia Jacobs^{5,6}, Viviane Slon^{1,7,8}, Fabrizio Mafessoni¹, Frédéric Romagné¹, Alice Pearson¹, Martin Petr¹, Nohemi Sala^{4,9}, Adrián Pablos^{4,9}, Arantza Aranburu^{2,3}, José María Bermúdez de Castro⁹, Eudald Carbonell^{10,11}, Bo Li^{5,6}, Maciej T. Krajcarz¹², Andrey I. Krivoshapkin^{13,14}, Kseniya A. Kolobova¹³, Maxim B. Kozlikin¹³, Michael V. Shunkov¹³, Anatoly P. Derevianko¹³, Bence Viola¹⁵, Steffi Grote¹, Elena Essel¹, David López Herráez¹, Sarah Nagel¹, Birgit Nickel¹, Julia Richter¹, Anna Schmidt¹, Benjamin Peter¹, Janet Kelso¹, Richard G. Roberts^{5,6}, Juan-Luis Arsuaga^{4,16}, Matthias Meyer^{1*} Beth Shapiro, 7,16,21 Richard Durbin, 3,17,21 and Eske Willerslev 1,2,17,18,21,22,* # Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment Pere Gelabert, ^{1,11,13,*} Susanna Sawyer, ^{1,11} Anders Bergström, ^{2,11,*} Ashot Margaryan, ³ Thomas C. Collin, ⁴ Tengiz Meshveliani, ⁵ Anna Belfer-Cohen, ⁶ David Lordkipanidze, ⁵ Nino Jakeli, ⁵ Zinovi Matskevich, ⁷ Guy Bar-Oz, ⁸ Daniel M. Fernandes, ^{1,9} Olivia Cheronet, ¹ Kadir T. Özdoğan, ¹ Victoria Oberreiter, ¹ Robin N.M. Feeney, ⁴ Mareike C. Stahlschmidt, ¹⁰ Pontus Skoglund, ^{2,12,*} and Ron Pinhasi^{1,12,*} @PalaeoPete ## Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments Diyendo Massilani^{a,1}, Mike W. Morley^{b,1}, Susan M. Mentzer^{c,d}, Vera Aldeias^e, Benjamin Vernot^a, Christopher Miller^{c,d,f}, Mareike Stahlschmidt^g, Maxim B. Kozlikin^h, Michael V. Shunkov^h, Anatoly P. Derevianko^h, Nicholas J. Conard^{c,d}, Sarah Wurz^{f,i}, Christopher S. Henshilwood^{f,i}, Javi Vasquez^j, Elena Essel^a, Sarah Nagel^a, Julia Richter^a, Birgit Nickel^a, Richard G. Roberts^{k,l}, Svante Pääbo^{a,1}, Viviane Slon^{a,m,n,o}, Paul Goldberg^{d,k}, and Matthias Meyer^{a,1} ## Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments Diyendo Massilani^{a,1}, Mike W. Morley^{b,1}, Susan M. Mentzer^{c,d}, Vera Aldeias^e, Benjamin Vernot^a, Christopher Miller^{c,d,f}, Mareike Stahlschmidt^g, Maxim B. Kozlikin^h, Michael V. Shunkov^h, Anatoly P. Derevianko^h, Nicholas J. Conard^{c,d}, Sarah Wurz^{f,i}, Christopher S. Henshilwood^{f,i}, Javi Vasquez^j, Elena Essel^a, Sarah Nagel^a, Julia Richter^a, Birgit Nickel^a, Richard G. Roberts^{k,l}, Svante Pääbo^{a,1}, Viviane Slon^{a,m,n,o}, Paul Goldberg^{d,k}, and Matthias Meyer^{a,1} # Ongoing issues in *sed*aDNA # **Taphonomy** ## Bioinformatic refinements ## Reference databases # Data integration ## Data integration @PalaeoPete ## Summary - Ancient DNA from sediment can be used to reconstruct past environments over hundreds of thousands of years. - Unknowns remain but progress is rapidly being made. - Huge potential for environmental palaeogenomics applications. - Many palaeoecological, environmental, and evolutionary questions still to explore!